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Chapter 1

Feedback Control and Basic Matrix
Theory

1.1 Review of Classical Feedback Control

1.1.1 Control System Basics

𝑢 𝐻 𝑦

Single-Input Single-Output (SISO) System

Input 𝑢 is the command (control) signal
Output 𝑦 is the response (measurment) signal
Process (a.k.a. ”Plant”) 𝐻 is a dynamic system that transforms the input into the output

Control Objective: Find 𝑢 to generate a desired 𝑦.

Typical electro-mechanical plants are made up of connected subsystems.

𝑢 Power Amplifier Electro-Mechanical Dynamics Sensor Dynamics 𝑦

Single-Input Single-Output (SISO) System
with expanded plant (𝐻)

Definition 1.1.1: Feedforward

Feedforward control is a form of open-loop control (i.e. no explicit feedback loops) this is typically used
for command shaping and/or disturbance rejection, and does not alter the dynamics of the process.

Reference Input 𝐺 𝐻 𝑦𝑟 𝑢

Feedforward system with feedforward controller 𝐺
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Definition 1.1.2: Feedback Control

Feedback control is closed-loop control, where the contorl signal 𝑢 is a function of the process out-
put y. Feedback control is typically used for regulation or tracking, and changes the process’s dynamics.

Reference Input +− 𝐺 𝐻 𝑦𝑟 𝑒𝑟𝑟 𝑢

Feedback system

The transfer function of the unity feedback system above is:

𝑇(𝑠) = 𝑅(𝑠)
𝑌(𝑠) =

𝐺(𝑠)𝐻(𝑠)
1 + 𝐺(𝑠)𝐻(𝑠)

1.1.2 SIS0 Classical Control System Design

Theorem 1.1.1 CT Linear System

Process Modeling
Most continuous-time linear systems are represented in the Laplace domain as a ratio of polynomials:

𝐻(𝑠) = 𝑏𝑚𝑠
𝑚 + ... + 𝑏1𝑠1 + 𝑏0

𝑎𝑛𝑠𝑛 + ... + 𝑎1𝑠1 + 𝑎0
, 𝑛 ⩾ 𝑚

The numerator contains zeros (m-zeros)
The denominator contains poles (n-poles)

Note:-

The variable 𝑠 = 𝜎 + 𝑗𝜔 is the Laplace variable from the Laplace Transform:

𝐻(𝑠) =
∫ ∞

0

𝑒−𝑠𝑡 ℎ(𝑡)𝑑𝑡

and h(t) is the impulse response.

The controller is usually also represented by a transfer function 𝐺(𝑠) which is the ratio of polynomials,

𝐺(𝑠) = 𝑈(𝑠)
𝐸(𝑠)

where 𝐸(𝑠) is the error and 𝑈(𝑠) is the output of the controller.

1.1.3 Typical Design Problem

a. Design a controller such that the output 𝑦(𝑡) tracks the input 𝑟(𝑡).

b. The output is insensitive to measurment noise.

Reference Input +− 𝐺 𝐻 +
+

Noise Input

𝑦𝑟 𝑒𝑟𝑟 𝑢
𝑑
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Feedback system

The output is given by:
𝑌(𝑠) = 𝐻(𝑠)𝑈(𝑠) + 𝐷(𝑠) = 𝐻(𝑠)[𝐺(𝑠)𝐸(𝑠)] + 𝐷(𝑠)

the error is given by:
𝐸(𝑠) = 𝑅(𝑠) − 𝑌(𝑠)

The closed-loop I/O relationship is given by

𝑌(𝑠) = 𝐺(𝑠)𝐻(𝑠)[𝑅(𝑠) − 𝑌(𝑠)] + 𝐷(𝑠)

⇒ 𝑌(𝑠) =
(

𝐺(𝑠)𝐻(𝑠)
1 + 𝐺(𝑠)𝐻(𝑠)

)
𝑅(𝑠) +

(
1

1 + 𝐺(𝑠)𝐻(𝑠)

)
𝐷(𝑠)

The coefficient of 𝑅(𝑠) is the Complementary Sensitivity 𝑇(𝑠)
The coefficient of 𝐷(𝑠) is the Sensitivity Function 𝑆(𝑠)

Note:-

We aim to keep the complementary sensitivity 𝑇(𝑠) high and sensitivity 𝑆(𝑠) low in an effort to minimize the
effects of noise. In this way 𝑌(𝑠) ≈ 𝑅(𝑠).

However turning up the gain too much causes instability.
This is the fundamental design tradeoff: as we increase gain of the compensator the sensitiviy to disturbances
decreases (good), but also increases the chance of instability (bad).

LOOK INTO LOOP SHAPING

Designs are analyzed in the frequency domain for Gain Margin and Phase Margin:

• Bode Diagram: Mag & Phase vs. Freq

• Nyquist Diagram: Real vs. Imag

• Nichols Chart: Magnitude vs. Phase

Definition 1.1.3: Common SISO Controllers

PID Compensator

𝐺𝑃𝐼𝐷(𝑠) = 𝑘𝑝 + 𝑘𝑖
1

𝑠
+ 𝑘𝑑𝑠

Lead-Lag Compensator

𝐺𝐿𝐿(𝑠) = 𝑘
𝑠 + 𝑏
𝑠 + 𝑎

𝑎 > 𝑏 → Lead
𝑎 < 𝑏 → Lag

1.2 Review Vector/Matrix Theory

1.2.1 Matrix Operations

Addition

𝐶[𝑁𝑥𝑀] = 𝐴[𝑁𝑥𝑀] + 𝐵[𝑁𝑥𝑀]

Matrix addition is an element-by-element operation.

𝐶 = 𝐴 + 𝐵 ⇔ 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗[
𝑐11 𝑐12
𝑐21 𝑐22

] [
𝑏11 𝑏12
𝑏21 𝑏22

]
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Multiplication

𝐶[𝑁𝑥𝑀] = 𝐴[𝑁𝑥𝑃] ∗ 𝐵[𝑃𝑥𝑀]

Matrix multiplication is the result of dot products between rows and columns.[
𝑐11 𝑐12
𝑐21 𝑐22

] [
𝑏11 𝑏12
𝑏21 𝑏22

]
=

[
𝑐11 ∗ 𝑏11 + 𝑐12 ∗ 𝑏21 𝑐11 ∗ 𝑏12 + 𝑐12 ∗ 𝑏22
𝑐21 ∗ 𝑏11 + 𝑐22 ∗ 𝑏21 𝑐21 ∗ 𝑏12 + 𝑐22 ∗ 𝑏22

]
Identity Matrix

Identity matricies have ones along the diagonal and zero everywhere else.

𝐼3 =


1 0 0
0 1 0
0 0 1


if 𝐴 is of equal dimension as 𝐼,

𝐴 = 𝐼𝐴

Symetric Matrix

A symetric matrix is one in which the transpose of the matrix is equal to the original matrix.
1 2 3
2 4 5
3 5 6


𝑇

=


1 2 3
2 4 5
3 5 6


Inverse Matrix

A square matrix 𝐴 has an inverse if a matrix 𝐵 can be found such that:

𝐵𝐴 = 𝐼

The 𝐵 matrix is the inverse of 𝐴,
𝐵 = 𝐴−1

This implies ⇒ 𝐴𝐴−1 = 𝐼 and 𝐴−1𝐴 = 𝐼
A general 2 × 2 matrix has the inverse:

𝐴 =

[
𝑎 𝑏
𝑐 𝑑

]
⇒ 𝐴−1 =

[
𝑎 𝑏
𝑐 𝑑

]−1
=

( 1

𝑎𝑑 − 𝑏𝑐
) [

𝑑 −𝑏
−𝑐 𝑎

]
Determinant

The determinant of a matrix 𝐴 is a scalar function of matrix components,
for a 2 × 2 matrix:

𝐴 =

[
𝑎 𝑏
𝑐 𝑑

]
⇒ |𝐴| =

����𝑎 𝑏
𝑐 𝑑

���� = (𝑎𝑑 − 𝑏𝑐)

for a 3 × 3 matrix:

𝐴 =


𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖


|𝐴| = 𝑎

����𝑒 𝑓
ℎ 𝑖

���� − 𝑏 ����𝑑 𝑓
𝑔 𝑖

���� + 𝑐 ����𝑑 𝑒
𝑔 ℎ

����
|𝐴| = 𝑎(𝑒𝑖 − 𝑓 ℎ) − 𝑏(𝑑𝑖 − 𝑓 𝑔) + 𝑐(𝑑ℎ − 𝑒 𝑔)
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1.2.2 Eigenvalue Problem

One of the most important problems in matrix analysis is the Eigenvalue Problem.

Definition 1.2.1: The Eigenvalue Problem

Given an 𝑁 × 𝑁 matrix, 𝐴, find the scalar(s) 𝜆 and vector(s) 𝑣 that satisfy:

𝐴[𝑁×𝑁]𝑣[𝑁×1] = 𝜆[1×1]𝑣[𝑁×1]

Of course we could set 𝑣 = 0 but this does not tell us much about the system.

Theorem 1.2.1 Finding Eigenvalues and Eigenvectors

Instead, we assume (𝐴 − 𝜆𝐼)−1 does not exist, which is equivalent to assuming that the determinant of
(𝐴 − 𝜆𝐼) is equal to zero.

|𝐴 − 𝜆𝐼| = 0

This yields an 𝑁 𝑡ℎ-order characteristic polynomial in 𝜆,

𝜆𝑁 + 𝑐𝑁−1𝜆
𝑁−1 + ... + 𝑐1𝜆1 + 𝑐0 = 0

The solution (roots) of this polynomial are the 𝑁 eigenvalues of 𝐴. The eigenvalues are denoted as:

𝜆𝑛 , 𝑛 = 1, ..., 𝑁

Each eigenvalue has an associated eigenvector 𝑣𝑛 that is the solution of:

(𝐴 − 𝜆𝑛 𝐼)𝑣𝑛 = 0

Note:-

If the real part of all the eigenvalues are negative the system is stable. If even one eigenvalue is positive the
system is unstable.
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Chapter 2

State Space Modeling and Dynamic
Response of Linear Systems

2.0.1 State Representations

In state-space a mathematical model is required to develop a controller.

Definition 2.0.1: State of a System

The State is a set of signals which, along with the current time, summersizes the current configuration of
the dynamic system.

States can be positions, velocities, accelerations, forces, momentum, torques, voltage, current, charge, etc.

Note:-

General ideas for understanding state-space modeling:

• The choice of state variables is not unique

• A model using a specific choice of state variables is called Realization

• A system has infinitely many realizations

• the Dimension of realization is = the number of states in that realization

• The order of a system is the minimal number of state variables required to descirbe it (𝑂𝑟𝑑𝑒𝑟 ⩽
𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠)

Inputs

• Endogenous Inputs Signals generated from inside the dynamic system.

• Exogenous Inputs Signals generated outside the dynamic system.

Outputs
Signals we measure for feedback or quantifying performance.
Outputs can be written as linear combinations of Inputs and States.

The standard notation convention for a state-space representation requires two parts:

State Equation

¤𝑥[𝑁×1] = 𝐴[𝑁×𝑁]𝑥[𝑁×1] + 𝐵[𝑁×𝑀]𝑢[𝑀×1]

Output Equation

𝑦[𝑃×1] = 𝐶[𝑃×𝑁]𝑥[𝑁×1] + 𝐷[𝑃×𝑀]𝑢[𝑀×1]
7



Conventional Nomenclature

𝑥(𝑡) → State Vector
𝐴→ State Matrix
𝐵 → Input Matrix
𝑢(𝑡) → Input Vector
𝑦(𝑡) → Output Vector
𝐶 → Output Matrix
𝐷 → Direct Transmission Matrix (Feedthrough)

First-Order Equations

Models of dynamic processes are written as differential equtions with time 𝑡 as the independent variable.

For mechanical systems, we typically have:
𝑥(𝑡) = Position or Displacement
¤𝑥(𝑡) = Velocity
¥𝑥(𝑡) = Acceleration

Example 2.0.1 (State Space Realization of a DC Motor)

The dynamic equations are:

𝐽
𝑑2𝜃(𝑡)
𝑑𝑡2

+ 𝑏 𝑑𝜃(𝑡)
𝑑𝑡

= 𝐾𝑇 𝑖(𝑡)

𝐿
𝑑𝑖(𝑡)
𝑑𝑡

+ 𝑅𝑖(𝑡) + 𝐾𝑉
𝑑𝜃(𝑡)
𝑑𝑡

= 𝑉𝑖𝑛(𝑡)

The First equation describes the mecahanical dynamics of a DC motor and the second equation describes
the electrical dynamics.
Definition of Terms:

𝐽
𝑑2𝜃(𝑡)
𝑑𝑡2 → Applied Torque

𝑏
𝑑𝜃(𝑡)
𝑑𝑡 → Rotational Damping

𝐾𝑇 𝑖(𝑡) → Coupling between mechanical torque constant 𝐾𝑇 and electrical current 𝑖(𝑡)

𝐿
𝑑𝑖(𝑡)
𝑑𝑡 → Voltage across coil (inductor)

𝑅𝑖(𝑡) → Voltage drop across internal resistance

𝐾𝑉
𝑑𝜃(𝑡)
𝑑𝑡 → Back EMF (coupling mechanical and electircal)

𝑉𝑖𝑛(𝑡) → Applied torque

After we have our dynamic equation we can create ”candidate states”:

𝑥1 = 𝑖(𝑡), 𝑥2(𝑡) = 𝜃(𝑡), 𝑥3(𝑡) = ¤𝜃(𝑡)

ALWAYS choose the lowest possible order derivative
Thus we have,

𝐽 ¤𝑥3 + 𝑏𝑥3 = 𝐾𝑇𝑥1

𝐿 ¤𝑥1 + 𝑅𝑥1 + 𝐾𝑉𝑥3 = 𝑉𝑖𝑛(𝑡)

8



To complete our system we need one first order ODE for each ”candidate state”

¤𝑥1 = −𝑅
𝐿
𝑥1 + 0𝑥2 −

𝐾𝑉

𝐿
𝑥3 +

1

𝐿
𝑉𝑖𝑛

¤𝑥2 = 0𝑥1 + 0𝑥2 + 1𝑥3 + 0

¤𝑥3 =
𝐾𝑇

𝐽
𝑥1 + 0𝑥2 −

𝑏

𝐽
𝑥3 + 0

Here 𝑥’s are our states and the 𝑉𝑖𝑛 term is our input.
Now, a state-space equation realization can be constructed,

State Equation: 
¤𝑥1
¤𝑥2
¤𝑥3

 =

−𝑅
𝐿 0 −𝐾𝑉

𝐿
0 0 1
𝐾𝑇
𝐽 0 − 𝑏

𝐽



𝑥1
𝑥2
𝑥3

 +

1
𝐿
0
0

 𝑉𝑖𝑛
If we have a sensor measuring angular velocity ¤𝜃(𝑡).

Output Equation: [
𝑦
]
=
[
0 0 1

] 
𝑥1
𝑥2
𝑥3

 +
[
0
]
𝑉𝑖𝑛

Because all coefficients of ¤𝑥2 are all equal to 0, it does not contribute. Thus, we can remove it.
Now, we are left with:

State Equation: [
¤𝑥1
¤𝑥3

]
=

[
−𝑅
𝐿 −𝐾𝑉

𝐿
𝐾𝑇
𝐽 − 𝑏

𝐽

] [
𝑥1
𝑥3

]
+
[
1
𝐿
0

]
𝑉𝑖𝑛

Output Equation: [
𝑦
]
=
[
0 0 1

] 
𝑥1
𝑥2
𝑥3

 +
[
0
]
𝑉𝑖𝑛

On the other hand , if we had a sensor that measured angular position 𝜃(𝑡) we could not remove 𝑥2.
→ Removing states that do not contribute, gives us what is called the minimum realization.

2.1 Solving General Differential Equations

INCLUDE NOTES FROM MISSED LECTURE
⇒ MATRIX EXPONENTIAL

LTI Solution VII
Continuing we havem

𝑥(𝑡) = 𝑒𝐴𝑡 𝑐

what is the constant vector 𝑐? Assume we know the state at inital time 𝑡 = 𝑡0:
LTI OSLUTION VIII
Substituting into assumed solution, we find the homogeneous solution to the state-space Initial Value

Problem is:

𝑥(𝑡) = 𝑒𝐴𝑡 𝑐 = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) = Φ(𝑡 , 𝑡0)𝑥(𝑡0)
The State Transition Matrix defines how the state evolves from its inital conditions:

𝑒𝐴(𝑡−𝑡0) = Φ(𝑡 , 𝑡0)
9



Note:-

the state transition matrix is always a function of the difference between time 𝑡 and a different time 𝑡0
For LTI systems, we can always set this inital time equal to 0 (Not true for LTV systems).

INCLUDE LTI SOLUTION X
Useful Properties of the Transition Matrix

Example 2.1.1 (LTI System Solution)

Let the state equations be: [
¤𝑥1(𝑡)
¤𝑥2(𝑡)

]
=

[
−3 1
0 −10

] [
𝑥1(𝑡)
𝑥2(𝑡)

]
+
[
0
1

]
𝑢(𝑡)

The matrix exponential for this system is:

𝑒𝐴𝑡 =

[
𝑒−3𝑡 1

7 (𝑒−3𝑡 − 𝑒−10𝑡)
0 𝑒−10𝑡

]
(discussion of how to obtain 𝑒𝐴𝑡 in later sections)
Now we find the state response to the following step input

𝑢(𝑡) =
{
0 𝑡 < 0

5 𝑡 ⩾ 0

and the following input conditions:

𝑥(0) =
[
1
1

]
First compute the response due to inital conditions:

𝑒𝐴𝑡𝑥(0) =
[
𝑒−3𝑡 1

7 (𝑒−3𝑡 − 𝑒−10𝑡)
0 𝑒−10𝑡

] [
1
1

]
=

[
8
7 𝑒

−3𝑡 − 1
7 (𝑒−10𝑡)

𝑒−10𝑡

]
Next, compute the forced response using the second form of the convolution integral:∫ 𝑡

𝑡0

[𝑒𝐴𝑡𝐵]𝑢(𝑡 − 𝜏)𝑑𝜏
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Chapter 3

Frequency-Domain Analysis
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Chapter 4

Controllability, Observability, and Pole
Placement Design
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Chapter 5

LQG/LQR Optimal Control
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